Name: _____

This exam has 9 questions, for a total of 100 points.

Please answer each question in the space provided. You need to write **full solutions**. Answers without justification will not be graded. Cross out anything the grader should ignore and circle or box the final answer.

Question	Points	Score
1	18	
2	10	
3	10	
4	10	
5	10	
6	10	
7	14	
8	10	
9	8	
Total:	100	

Question 1. (18 pts)

Determine whether each of the following statements is true or false. You do NOT need to explain.

- (a) In the vector space \mathbb{R}^3 , any 4 vectors v_1, v_2, v_3, v_4 are linearly dependent.
- (b) The following matrix

/1	1	1	$0 \rangle$
0	1	3	1
0	0	0	0
$\left(0 \right)$	0	0	1

is a row echelon form.

- (c) Let v_1 , v_2 and v_3 be three linearly independent vectors in \mathbb{R}^4 . Then the dimension of $\text{Span}(v_1, v_2, v_3)$ is 3.
- (d) An $(n \times n)$ matrix is nonsingular if and only if its determinant is nonzero.
- (e) We can find two $(n \times n)$ matrices A and B such that $\det(AB) \neq \det(BA)$.
- (f) The linear system

has infinitely many solutions.

Cale + and	
Solution:	

- (a) True
- (b) False
- (c) True
- (d) True
- (e) False
- (f) True

Question 2. (10 pts) Solve the following linear system

$$\begin{cases} 4x_1 + 3x_2 + 2x_3 - x_4 = 4\\ 5x_1 + 4x_2 + 3x_3 - x_4 = 4\\ -2x_1 - 2x_2 - x_3 + 2x_4 = -3\\ 11x_1 + 6x_2 + 4x_3 + x_4 = 11 \end{cases}$$

Question 3. (10 pts)

Determine whether the following matrix is nonsingular. If yes, find its inverse.

$$\begin{pmatrix} 0 & 0 & 1 & -1 \\ -2 & 0 & 1 & -1 \\ 2 & 2 & 1 & 2 \\ 2 & 1 & 0 & 2 \end{pmatrix}$$

$$\begin{array}{l} \textbf{Solution: Consider} \\ \begin{bmatrix} 0 & 0 & 1 & -1 & | 1 & 0 & 0 & 0 \\ -2 & 0 & 1 & -1 & | 0 & 1 & 0 & 0 \\ 2 & 2 & 1 & 2 & | 0 & 0 & 1 & 0 \\ 2 & 1 & 0 & 2 & | 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{-R_1+R_2} \begin{bmatrix} 0 & 0 & 1 & -1 & | & 1 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 & | & -1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 2 & | & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{-R_2+R_4} \begin{bmatrix} 0 & 0 & 1 & -1 & | & 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 2 & | & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{-R_3+R_1} \begin{bmatrix} 0 & 0 & 1 & -1 & | & 1 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 & | & -1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 2 & | & -1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 2 & | & -1 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{-2R_4+R_3} \begin{bmatrix} 0 & 0 & 1 & -1 & | & 1 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 & | & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 & | & 1 & -1 & 1 & -2 \\ 0 & 1 & 0 & 2 & | & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 & | & -1 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{-R_3+R_1} \begin{bmatrix} 0 & 0 & 0 & 1 & | & 0 & 1 & -1 & 2 \\ -2 & 0 & 0 & 0 & | & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 & | & -1 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{-R_3+R_1}$$

$$I \text{ skip the rest of the computation. In the end, we get} \begin{bmatrix} 1 & 0 & 0 & 0 & | 1/2 & -1/2 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & -1 & -1 & 2 & -3 \\ 0 & 0 & 1 & 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 1 & 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 1 & 0 & 1 & -1 & 2 \end{bmatrix}$$
So the matrix is nonsingular, and its inverse is
$$\begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ -1 & -1 & 2 & -3 \\ 1 & 1 & -1 & 2 \\ 0 & 1 & -1 & 2 \end{pmatrix}$$

Question 4. (10 pts)

Compute the determinant of the following matrix

$$\begin{pmatrix} 1 & -1 & 2 & -2 \\ -1 & 2 & 1 & 6 \\ 2 & 1 & 14 & 10 \\ -2 & 6 & 10 & 33 \end{pmatrix}$$

Solution:

Apply elementary row operations and keep track of how the determinant changes.

$$\begin{vmatrix} 1 & -1 & 2 & -2 \\ -1 & 2 & 1 & 6 \\ 2 & 1 & 14 & 10 \\ -2 & 6 & 10 & 33 \end{vmatrix} = 9$$

Question 5. (10 pts)

Determine whether the following are subspaces.

(a) Is $S = \{(x, y, z) \in \mathbb{R}^3 \mid x + y \ge 0\}$ a subspace of \mathbb{R}^3 ?

Solution: Notice that (1, 1, 0) is in *S*. Choose $\alpha = -1$, then $(-1) \cdot (1, 1, 0) = (-1, -1, 0)$

is not in S. Hence, S is not closed under scalar multiplication. So S is not a subspace.

(b) Let \mathbb{P}_2 be the vector space of all polynomials with degree equal to or less than 2. Is

$$W = \{ \text{all polynomials } p(x) = a_2 x^2 + a_1 x + a_0 \text{ in } \mathbb{P}_2 \text{ such that } a_1 = 0 \}$$

a subspace of \mathbb{P}_2 ?

Solution: Suppose $p_1(x)$ and $p_2(x)$ are in W, that is, $p_1(x) = a_2x^2 + a_0$ $p_2(x) = b_2x^2 + b_0.$ It follows that $p_1(x) + p_2(x) = (a_2 + b_2)x^2 + (a_0 + b_0)$. So $(p_1 + p_2)(x)$ is in W. Now suppose $p(x) = a_2x^2 + a_0 \in W$ and $\alpha \in \mathbb{R}$. Then $(\alpha \cdot p)(x) = (\alpha a_2)x^2 + \alpha a_0 \in W.$

Combining these, we see that W is a subspace of \mathbb{P}_2 .

Question 6. (10 pts)

Determine whether
$$x = \begin{bmatrix} 0\\10\\6\\3 \end{bmatrix}$$
 lies in the span of the vectors
 $v_1 = \begin{bmatrix} 1\\2\\2\\4 \end{bmatrix}, v_2 = \begin{bmatrix} 0\\3\\2\\1 \end{bmatrix}$ and $v_3 = \begin{bmatrix} 1\\-2\\0\\3 \end{bmatrix}$.

Solution: Consider the system

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 2 & 3 & -2 & 10 \\ 2 & 2 & 0 & 6 \\ 4 & 1 & 3 & 3 \end{bmatrix}$$

Apply elementary row operations

	$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
It has a solution	$\begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$
So x is in the span of v_1, v_2 and	v_3 .

Question 7. (14 pts)

Determine whether

$$v_1 = \begin{bmatrix} 2\\4\\6\\7 \end{bmatrix}, v_2 = \begin{bmatrix} 3\\3\\0\\0 \end{bmatrix}, v_3 = \begin{bmatrix} 0\\2\\0\\0 \end{bmatrix} \text{ and } v_4 = \begin{bmatrix} 2\\1\\3\\4 \end{bmatrix}$$

form a basis of \mathbb{R}^4 .

Solution: Form the matrix by using v_1, v_2, v_3 and v_4 as column vectors

$$A = \begin{pmatrix} 2 & 3 & 0 & 2 \\ 4 & 3 & 2 & 1 \\ 6 & 0 & 0 & 3 \\ 7 & 0 & 0 & 4 \end{pmatrix}$$

Apply elementary row operations, and we get its row echelon form

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

So A is nonsingular. It follows that v_1, v_2, v_3 and v_4 are linearly independent. Now observe that dim $\mathbb{R}^4 = 4$. So $\{v_1, v_2, v_3, v_4\}$ is a basis of \mathbb{R}^4 .

Question 8. (10 pts)

Let \mathbb{P}_2 be the vector space of all polynomials of degree equal to or less than 2. Determine whether the following polynomials in \mathbb{P}_2

$$p_1(t) = 2t + 3$$

 $p_2(t) = t^2 + t + 1$
 $p_3(t) = (t - 1)^2$

are linearly independent or not.

Solution:

Consider a linear combination of (2t + 3), $t^2 + t + 1$ and $(t - 1)^2$:

$$c_1(2t+3) + c_2(t^2+t+1) + c_3(t-1)^2 = 0.$$

Being linearly independent is equivalent to $a_1 = a_2 = a_3 = 0$ is the only solution. Regroup the coefficients,

$$(c_2 + c_3)t^2 + (2c_1 + c_2 - 2c_3)t + (3c_1 + c_2 + c_3) = 0$$

and we have the following linear system:

$$\begin{cases} c_2 + c_3 = 0\\ 2c_1 + c_2 - 2c_3 = 0\\ 3c_1 + c_2 + c_3 = 0 \end{cases}$$

Solve this and we find out that

$$\begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

is the only solution. So (2t+3), $t^2 + t + 1$ and $(t-1)^2$ are linearly independent.

Question 9. (8 pts)

(a) Suppose A is a (3×3) matrix such that $A^T = -A$. Show that det(A) = 0.

Solution: We know that for any square matrix A,

$$\det(A^T) = \det(A).$$

When A is (3×3) , we have

$$\det(-A) = (-1)^3 \det(A) = -\det(A).$$

Now if $A^T = -A$, then we have

$$\det(A) = \det(A^T) = \det(-A) = -\det(A).$$

So $2 \cdot \det(A) = 0$, which implies $\det(A) = 0$.

(b) Now suppose B is a (2×2) matrix such that $B^T = -B$. Then we do not have $\det(B) = 0$ in general. Find a (2×2) matrix B such that $B^T = -B$ and $\det(B) \neq 0$.

Solution: For example, let

$$B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Clearly, we have $det(B) = 1 \neq 0$ and $B^T = -B$.