Math 304 Midterm 1

Name:

\qquad

This exam has 9 questions, for a total of 100 points.
Please answer each question in the space provided. You need to write full solutions. Answers without justification will not be graded. Cross out anything the grader should ignore and circle or box the final answer.

Question	Points	Score
1	18	
2	10	
3	10	
4	10	
5	10	
6	10	
7	14	
8	10	
9	8	
Total:	100	

Question 1. (18 pts)

Determine whether each of the following statements is true or false. You do NOT need to explain.
(a) In the vector space \mathbb{R}^{3}, any 4 vectors $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly dependent.
(b) The following matrix

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 3 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

is a row echelon form.
(c) Let v_{1}, v_{2} and v_{3} be three linearly independent vectors in \mathbb{R}^{4}. Then the dimension of $\operatorname{Span}\left(v_{1}, v_{2}, v_{3}\right)$ is 3 .
(d) An $(n \times n)$ matrix is nonsingular if and only if its determinant is nonzero.
(e) We can find two $(n \times n)$ matrices A and B such that $\operatorname{det}(A B) \neq \operatorname{det}(B A)$.
(f) The linear system

$$
\begin{gathered}
x+y-3 z+w=0 \\
2 x+9 y+7 z-3 w=0 \\
-x+4 y+3 z-w=0
\end{gathered}
$$

has infinitely many solutions.

Solution:

(a) True
(b) False
(c) True
(d) True
(e) False
(f) True

Question 2. (10 pts)
Solve the following linear system

$$
\left\{\begin{array}{l}
4 x_{1}+3 x_{2}+2 x_{3}-x_{4}=4 \\
5 x_{1}+4 x_{2}+3 x_{3}-x_{4}=4 \\
-2 x_{1}-2 x_{2}-x_{3}+2 x_{4}=-3 \\
11 x_{1}+6 x_{2}+4 x_{3}+x_{4}=11
\end{array}\right.
$$

Solution: The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{rrrr|r}
4 & 3 & 2 & -1 & 4 \\
5 & 4 & 3 & -1 & 4 \\
-2 & -2 & -1 & -2 & -3 \\
11 & 6 & 4 & 1 & 11
\end{array}\right] \xrightarrow{-R_{1}+R_{2}}\left[\begin{array}{rrrrr|r}
4 & 3 & 2 & -1 & 4 \\
1 & 1 & 1 & 0 & 0 \\
-2 & -2 & -1 & -2 & -3 \\
11 & 6 & 4 & 1 & 11
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}} \\
{\left[\begin{array}{rrrr|r}
1 & 1 & 1 & 0 & 0 \\
4 & 3 & 2 & -1 & 4 \\
-2 & -2 & -1 & -2 & -3 \\
11 & 6 & 4 & 1 & 11
\end{array}\right] \xrightarrow{\ldots}\left[\begin{array}{rrrr|r}
1 & 1 & 1 & 0 & 0 \\
0 & -1 & -2 & -1 & 4 \\
0 & 0 & 1 & 2 & -3 \\
0 & -5 & -7 & 1 & 11
\end{array}\right] \xrightarrow{-5 R_{2}+R_{4}}} \\
{\left[\begin{array}{rrrr|r}
1 & 1 & 1 & 0 & 0 \\
0 & -1 & -2 & -1 & 4 \\
0 & 0 & 1 & 2 & -3 \\
0 & 0 & 3 & 6 & -9
\end{array}\right] \xrightarrow{-3 R_{3}+R_{4}}\left[\begin{array}{rrrr|r}
1 & 1 & 1 & 0 & 0 \\
0 & -1 & -2 & -1 & 4 \\
0 & 0 & 1 & 2 & -3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{gathered}
$$

Its row echelon form is

$$
\left[\begin{array}{rrrr|r}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 & 1 & -4 \\
0 & 0 & 1 & 2 & -3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So the solutions are

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
1-\alpha \\
3 \alpha+2 \\
-3-2 \alpha \\
\alpha
\end{array}\right)
$$

Question 3. (10 pts)
Determine whether the following matrix is nonsingular. If yes, find its inverse.

$$
\left(\begin{array}{cccc}
0 & 0 & 1 & -1 \\
-2 & 0 & 1 & -1 \\
2 & 2 & 1 & 2 \\
2 & 1 & 0 & 2
\end{array}\right)
$$

Solution: Consider

$$
\begin{aligned}
& {\left[\begin{array}{cccc|cccc}
0 & 0 & 1 & -1 & 1 & 0 & 0 & 0 \\
-2 & 0 & 1 & -1 & 0 & 1 & 0 & 0 \\
2 & 2 & 1 & 2 & 0 & 0 & 1 & 0 \\
2 & 1 & 0 & 2 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow{-R_{1}+R_{2}}\left[\begin{array}{cccc|rccc}
0 & 0 & 1 & -1 & 1 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
2 & 2 & 1 & 2 & 0 & 0 & 1 & 0 \\
2 & 1 & 0 & 2 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow[-R_{2}+R_{3}]{-R_{2}+R_{4}}} \\
& {\left[\begin{array}{cccc|cccc}
0 & 0 & 1 & -1 & 1 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 2 & 1 & 2 & -1 & 1 & 1 & 0 \\
0 & 1 & 0 & 2 & -1 & 1 & 0 & 1
\end{array}\right] \xrightarrow{-2 R_{4}+R_{3}}\left[\begin{array}{cccc|rrlr}
0 & 0 & 1 & -1 & 1 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & -1 & 1 & -2 \\
0 & 1 & 0 & 2 & -1 & 1 & 0 & 1
\end{array}\right] \xrightarrow{-R_{3}+R_{1}}[} \\
& {\left[\begin{array}{cccc|rrrr}
0 & 0 & 0 & 1 & 0 & 1 & -1 & 2 \\
-2 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & -1 & 1 & -2 \\
0 & 1 & 0 & 2 & -1 & 1 & 0 & 1
\end{array}\right] \rightarrow \cdots}
\end{aligned}
$$

I skip the rest of the computation. In the end, we get

$$
\left[\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 0 & 1 / 2 & -1 / 2 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & -1 & 2 & -3 \\
0 & 0 & 1 & 0 & 1 & 1 & -1 & 2 \\
0 & 0 & 0 & 1 & 0 & 1 & -1 & 2
\end{array}\right]
$$

So the matrix is nonsingular, and its inverse is

$$
\left(\begin{array}{cccc}
1 / 2 & -1 / 2 & 0 & 0 \\
-1 & -1 & 2 & -3 \\
1 & 1 & -1 & 2 \\
0 & 1 & -1 & 2
\end{array}\right)
$$

Question 4. (10 pts)
Compute the determinant of the following matrix

$$
\left(\begin{array}{rrrr}
1 & -1 & 2 & -2 \\
-1 & 2 & 1 & 6 \\
2 & 1 & 14 & 10 \\
-2 & 6 & 10 & 33
\end{array}\right)
$$

Solution:

Apply elementary row operations and keep track of how the determinant changes.

$$
\left|\begin{array}{rrrr}
1 & -1 & 2 & -2 \\
-1 & 2 & 1 & 6 \\
2 & 1 & 14 & 10 \\
-2 & 6 & 10 & 33
\end{array}\right|=9
$$

Question 5. (10 pts)

Determine whether the following are subspaces.
(a) Is $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y \geq 0\right\}$ a subspace of \mathbb{R}^{3} ?

Solution: Notice that $(1,1,0)$ is in S. Choose $\alpha=-1$, then

$$
(-1) \cdot(1,1,0)=(-1,-1,0)
$$

is not in S. Hence, S is not closed under scalar multiplication. So S is not a subspace.
(b) Let \mathbb{P}_{2} be the vector space of all polynomials with degree equal to or less than 2 . Is

$$
W=\left\{\text { all polynomials } p(x)=a_{2} x^{2}+a_{1} x+a_{0} \text { in } \mathbb{P}_{2} \text { such that } a_{1}=0\right\}
$$

a subspace of \mathbb{P}_{2} ?
Solution: Suppose $p_{1}(x)$ and $p_{2}(x)$ are in W, that is,

$$
\begin{aligned}
& p_{1}(x)=a_{2} x^{2}+a_{0} \\
& p_{2}(x)=b_{2} x^{2}+b_{0} .
\end{aligned}
$$

It follows that $p_{1}(x)+p_{2}(x)=\left(a_{2}+b_{2}\right) x^{2}+\left(a_{0}+b_{0}\right)$. So $\left(p_{1}+p_{2}\right)(x)$ is in W. Now suppose $p(x)=a_{2} x^{2}+a_{0} \in W$ and $\alpha \in \mathbb{R}$. Then

$$
(\alpha \cdot p)(x)=\left(\alpha a_{2}\right) x^{2}+\alpha a_{0} \in W
$$

Combining these, we see that W is a subspace of \mathbb{P}_{2}.

Question 6. (10 pts)
Determine whether $x=\left[\begin{array}{r}0 \\ 10 \\ 6 \\ 3\end{array}\right]$ lies in the span of the vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
2 \\
2 \\
4
\end{array}\right], v_{2}=\left[\begin{array}{l}
0 \\
3 \\
2 \\
1
\end{array}\right] \text { and } v_{3}=\left[\begin{array}{r}
1 \\
-2 \\
0 \\
3
\end{array}\right] .
$$

Solution: Consider the system

$$
\left[\begin{array}{rrr|r}
1 & 0 & 1 & 0 \\
2 & 3 & -2 & 10 \\
2 & 2 & 0 & 6 \\
4 & 1 & 3 & 3
\end{array}\right]
$$

Apply elementary row operations

$$
\left[\begin{array}{rrr|r}
1 & 0 & 1 & 0 \\
0 & 1 & -1 & 3 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

It has a solution

$$
\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right)
$$

So x is in the span of v_{1}, v_{2} and v_{3}.

Question 7. (14 pts)
Determine whether

$$
v_{1}=\left[\begin{array}{l}
2 \\
4 \\
6 \\
7
\end{array}\right], v_{2}=\left[\begin{array}{l}
3 \\
3 \\
0 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{l}
0 \\
2 \\
0 \\
0
\end{array}\right] \text { and } v_{4}=\left[\begin{array}{l}
2 \\
1 \\
3 \\
4
\end{array}\right]
$$

form a basis of \mathbb{R}^{4}.

Solution: Form the matrix by using v_{1}, v_{2}, v_{3} and v_{4} as column vectors

$$
A=\left(\begin{array}{llll}
2 & 3 & 0 & 2 \\
4 & 3 & 2 & 1 \\
6 & 0 & 0 & 3 \\
7 & 0 & 0 & 4
\end{array}\right)
$$

Apply elementary row operations, and we get its row echelon form

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

So A is nonsingular. It follows that v_{1}, v_{2}, v_{3} and v_{4} are linearly independent.
Now observe that $\operatorname{dim} \mathbb{R}^{4}=4$. So $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis of \mathbb{R}^{4}.

Question 8. (10 pts)

Let \mathbb{P}_{2} be the vector space of all polynomials of degree equal to or less than 2 . Determine whether the following polynomials in \mathbb{P}_{2}

$$
\begin{gathered}
p_{1}(t)=2 t+3 \\
p_{2}(t)=t^{2}+t+1 \\
p_{3}(t)=(t-1)^{2}
\end{gathered}
$$

are linearly independent or not.

Solution:

Consider a linear combination of $(2 t+3), t^{2}+t+1$ and $(t-1)^{2}$:

$$
c_{1}(2 t+3)+c_{2}\left(t^{2}+t+1\right)+c_{3}(t-1)^{2}=0 .
$$

Being linearly independent is equivalent to $a_{1}=a_{2}=a_{3}=0$ is the only solution. Regroup the coefficients,

$$
\left(c_{2}+c_{3}\right) t^{2}+\left(2 c_{1}+c_{2}-2 c_{3}\right) t+\left(3 c_{1}+c_{2}+c_{3}\right)=0
$$

and we have the following linear system:

$$
\left\{\begin{array}{l}
c_{2}+c_{3}=0 \\
2 c_{1}+c_{2}-2 c_{3}=0 \\
3 c_{1}+c_{2}+c_{3}=0
\end{array}\right.
$$

Solve this and we find out that

$$
\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

is the only solution. So $(2 t+3), t^{2}+t+1$ and $(t-1)^{2}$ are linearly independent.

Question 9. (8 pts)
(a) Suppose A is a (3×3) matrix such that $A^{T}=-A$. Show that $\operatorname{det}(A)=0$.

Solution: We know that for any square matrix A,

$$
\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)
$$

When A is (3×3), we have

$$
\operatorname{det}(-A)=(-1)^{3} \operatorname{det}(A)=-\operatorname{det}(A)
$$

Now if $A^{T}=-A$, then we have

$$
\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)=\operatorname{det}(-A)=-\operatorname{det}(A)
$$

So $2 \cdot \operatorname{det}(A)=0$, which implies $\operatorname{det}(A)=0$.
(b) Now suppose B is a (2×2) matrix such that $B^{T}=-B$. Then we do not have $\operatorname{det}(B)=0$ in general. Find a (2×2) matrix B such that $B^{T}=-B$ and $\operatorname{det}(B) \neq 0$.

Solution: For example, let

$$
B=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

Clearly, we have $\operatorname{det}(B)=1 \neq 0$ and $B^{T}=-B$.

